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1. Introduction

● WSI retrieval has recently attracted growing, which can return a series of similar 
WSIs from a historically characterized database when given a WSI for a query. 

● These retrieved WSIs with associated diagnosis information can help provide high 
interpretability, making it possible in clinical diagnosis, medical research, and 
trainee education.

● Challeng
1. Effective feature extraction is very challenging due to the enormous 

heterogeneity within WSIs and intra-/inter-class variations across WSIs. 
2. It is more desirable to find WSIs in which there exist diagnosis-relevant

regions/patches rather than retrieving WSIs with global similarity.
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1. Introduction

● Yottixel [1] and FISH [2] depend entirely or partly on the ImageNet data, which may 
result in suboptimal performance due to the domain difference between natural and 
pathological images.

● For histopathological images, negative pairs in the contrastive learning setting may 
be composed of highly related samples, which could confuse the network training  
process.

● Goal
1. Robust content feature extraction
2. A global aggregation approach on the local patch retrieval results to find the most similar 

WSIs.
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2. Methods
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● The overview of WSI retrieval framework (RetCCL) is implemented using a two-stage 
strategy, including the CCL-based feature extractor and the WSI retrieval process.



2. Preliminary of contrastive learning

● Given an image    and its two different augmented views:       and      ,
● Pull closer the features (𝒒 and 𝒌+) of views from the same image.
● Repel away the features (𝒒 and 𝒌−) of views from different images.
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Figure 1. Moco [3]

[3] Kaiming He, et al. "Momentum contrast for unsupervised visual representation learning." CVPR. 2020.



2.  Clustering-guided contrastive learning

● Problem: 
○ The basic assumption about the negative samples is not suitable for WSI.
○ Just like [4] have claimed, there may exist possible highly correlated samples, which 

should be considered as positive samples with respect to the anchor sample       , while 
they are repelled from the anchor sample in the setting of the standard contrastive learning.

● Solution:
○ Weighted InfoNCE (                   )

■ Based on a subqueue strategy to reduce the effect of possible false-negative samples in 
contrastive learning.

○ Group-level InfoNCE (                  ) from [4]
■ Encourages the anchor sample and its nearest group center to have higher similarity 

while enforcing the anchor sample and the remaining group centers to have a lower 
similarity.
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2.1. Online Clustering-guided Memory Bank Construction

● Goal: Reduce the influence of potential false-negative samples.
○ A weighted InfoNCE loss is proposed to give less weight on these false-negative-like 

samples with respect to the anchor feature embedding.
● Step1.

○ All negative samples within the memory bank are first clustered into 𝑄 classes using the K-
means approach, which are called 𝑄 sub-memory queues. 

○ Their centroids are represented as                                       . 
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2.1. Online Clustering-guided Memory Bank Construction

● Step 2.
○ The similarity scores between the input feature       and each centroid                                 are 

calculated as                                            .
○ The maximum of these similarity scores can be obtained as               , which corresponds to 

the cluster            whose centroid is most similar to      .
○ The weight             for each negative sample in the memory bank can be calculated by

9



● Step 3.
○ The weighted InfoNCE loss W-InfoNCE can be defined as

2.1. Online Clustering-guided Memory Bank Construction
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● Clustering Process.
○ At the beginning

■ Initialize the 𝑄 centroids of these sub-memory queues, we randomly feed 𝑇
histopathological images into our encoder that is initialized by its pretrained 
weights on the ImageNet data. 

○ During each iteration
■ Each cluster centroid is updated by

■ where                          represents a weighting factor,       denotes the feature set of the 
𝑗th class(cluster) in the current mini-batch,        represents the 𝑖th feature vector in 
the mini-batch

○ At each epoch
■ All clustering centroids will be updated by re-clustering all negative samples in the 

memory bank.

2.1. Online Clustering-guided Memory Bank Construction
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● Goal: further mitigate the unbalanced positive/negative sample ratio
○ Add the cross-level discrimination (CLD) [4] as an auxiliary branch.

2.2. Group-level Discrimination

12
[4] Xudong Wang, Ziwei Liu, and Stella X. Yu. "Unsupervised feature learning by cross-level instance-
group discrimination." CVPR. 2021.



● Step 1.
○ Embeddings from all samples in one mini-batch are then clustered into 𝑆 clusters for each 

of the two augmented view branches, and their centroids are denoted respectively as       
and      , where                             .

2.2. Group-level Discrimination
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● Step 2.
○ Given a query instance, we compare its augmented view embedding (       or       ) with cluster 

centroids in the opposite branch to define positive and negative pairs for computing the group-
level InfoNCE loss.

○ For example, given       
■ : positive sample, the closest centroid in the       branch. 
■ : negative samples, the remaining 𝑆-1 centroids, where 𝑖 ∈ [1, 2, …, 𝑆−1].

○ The group-level InfoNCE loss            (CLD loss) is given by

2.2. Group-level Discrimination
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● Final Loss:                                                    
● where 𝜆 is a hyperparameter that controls the contribution of the two loss functions.

2.2. Group-level Discrimination
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3.  WSI retrieval method

● Due to the unique WSI characteristics, WSI-CBIR is usually implemented in two stages:
1. Offline WSI feature extraction
2. Similar WSI searching
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3.  WSI retrieval method
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Step / Method Yottixel [1] FISH [2] RetCCL

Feature 

Extraction

Backbone

DenseNet (ImageNet)

+

VQ-VAE (TCGA)

DenseNet 

(ImageNet)

ResNet50 (TCGA)

Feature 

Compress

Binary codes Binary codes X

Database 

Construction

Dual clustering method Dual clustering 

method

Dual clustering method

WSI Searching

‘‘median-of-min’’ approach 

for Hamming distance 

nearest neighbor searching

VEB tree with an 

uncertainty-based 

ranking algorithm

Cosine-similarity-based

nearest neighbor 

searching

1. more accurate

2. Easy to use, more accurate
[1] Shivam Kalra, et al. "Yottixel–an image search engine for large archives of histopathology whole slide 
images." Medical Image Analysis. 2020.
[2] Chengkuan Chen, et al. "Fast and scalable search of whole-slide images via self-supervised deep 
learning." Nature Biomedical Engineering. 2022.

careful parameter settingSimple, but not accurate



3.  WSI retrieval method
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● The overall procedure of our WSI retrieval contains a two-step operation:
1. Database Construction for WSI Retrieval
2. WSI Query Process



3.1.  Database Construction for WSI Retrieval
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● Step 1.
○ A WSI is  cropped into small patches.
○ These patches are then fed into our CCL model to 

obtain their corresponding feature vectors, 
denoted as         .



3.1.  Database Construction for WSI Retrieval
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● Step 2.
○ Do K-means clustering,       distinctive classes 

within the WSI are obtained, which are 
represented by                                      .



3.1.  Database Construction for WSI Retrieval
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● Step 3.
○ Each cluster is further re-clustered into 𝐾2 sub-

classes using their spatial coordinates as features, 
where 𝐾2 = 𝑟𝑜𝑢𝑛𝑑(𝑅 ⋅ 𝑛).

○ 𝑅 : a ratio parameter and is set as 20%
○ 𝑛 : the number of patches within each cluster 𝑭𝑖
○ Last, the patches in these final clustering centroids

are adopted as the representation of the WSI.



3.2.  WSI Query Process
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● After building the WSI database, the subsequent WSI retrieval can be regarded as a 
patch-level nearest neighbor matching, ranking, and aggregation process. 



3.2.  WSI Query Process
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● Step 1.
○ The query WSI can be represented as 

a mosaic with 𝑘 patches, such as 
○ 𝑊𝑆𝐼 =                  
○ : feature vector of the 𝑖th patch
○ 𝑘 : the total number of patches within 

the WSI.

nearest 
neighbor 
matching

ranking

aggregation



3.2.  WSI Query Process
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● Step 2.
○ Each patch will be adopted as a query 

image to generate the corresponding
○ retrieval results that are stored in 𝑘

bags 𝐵𝑎𝑔𝑠 = ,
○ contains 𝑡

retrieved patches along with their 
cosine similarity scores calculated 
with the query patch

○ Note that 𝑡 varies for different bags.

nearest 
neighbor 
matching

ranking

aggregation



3.2.  WSI Query Process
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● Step 3.
○ Entropy with the ability of uncertainty 

measure is used to calculate the 
uncertainty of each bag.

○ .
○ .
○ : the total number of diagnosis types 

within the bag 
○ :  the probability of the 𝑚th diagnosis 

type occurring in a bag
○ .
○ .
○ where
○ : judges whether the current 

sample belongs to the 𝑚th diagnosis type

nearest 
neighbor 
matching

ranking

aggregation



3.2.  WSI Query Process
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● Step 4.
○ Reorder these bags in descending order 

based on their entropy to obtain new 
bags 

● Step 5.
○ Remove bags whose average cosine 

similarity scores are smaller than the 𝜂.
○ .
○ .
○ 𝐴𝑣𝑒𝑇𝑜𝑝: the average of the top-5 cosine 

similarity scores within the bag.

nearest 
neighbor 
matching

ranking

aggregation



3.2.  WSI Query Process
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● Step 6.
○ Majority vote to obtain associated WSI 

for each bag according to top-5 samples 
in each bag.

● Step 7.
○ Return top-k similar WSIs

nearest 
neighbor 
matching

ranking

aggregation



4.1.  Datasets
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Dataset # of WSIs # of types magnification patchsize # of patches

TCGA 29,763 32 20× 1024 × 1024 14,325,848

PAIP 2,457 6 20× 1024 × 1024 1,254,414

UniToPatho 292 4 20× 1812 × 1812 8,699

TissueNet 1,016 4 - 1200 × 1200 5,926

DiagSet-A.2. 430 4 5x 224 × 224 68,562



4.2.  Evaluation metrics
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● For image retrieval
○ ACC@k: ACC@k = 1 if any one of the top-k returns has the same label as the query image
○ mMV@k: mMV@k = 1 only if the majority of these retrieved images have the same label 

as the query image
● For the downstream classification task

○ Accuracy (ACC)
○ F1 score

● All the image retrieval validation experiments are conducted using the leave-one-
patient-out strategy to avoid information leakage due to the occasional existence of 
multiple WSIs from the same patient.



4.3.  Results of ablation experiments
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● Effect of network components



4.3.  Results of ablation experiments
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● Effect of different number of clustering centers (𝑄 and 𝑆)



4.3.  Results of ablation experiments
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● Effect of different number of MLP heads



4.4. Comparison between our CCL and other SSL-based   
feature extractors
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● Compare with SimCLR v1, SwAV, and MoCo v2



4.4.   Results of ablation experiments
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● Effect of different settings of 
○ This may be due to the fact that the instance discrimination task in contrastive learning 

needs more explicit pseudo-labels to supervise network training.



4.5. Interpretability analysis for patch-level retrieval
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4.6.  Results of WSI anatomic site retrieval
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4.6.  Results of WSI anatomic site retrieval
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4.7.  Results of WSI cancer subtype retrieval
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4.7.  Results of WSI cancer subtype retrieval
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4.8. Results of different feature extraction methods
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4.9. Interpretability analysis for WSI-level retrieval
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4.10.  Results of downstream classification task
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● Backbone model: ResNet50

● ImageNet: ImageNet pretrained features in a supervised manner

● A supervised baseline using 100% of the training data is also implemented, which 

produces an ACC of 0.8482 and a F1 score of 0.8462.



5.  Conclusion
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● RetCCL for both WSI-level and patch-level retrieval
○ Novel CCL-based feature extractor.
○ A ranking and aggregation algorithm for WSI retrieval.

● RetCCL outperforms existing WSI retrieval methods by a large margin. 
● Our CCL-based feature is also superior to the ImageNet pretrained feature or other 

SSL-based features



Thanks For Listening !
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