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A B S T R A C T

Benefiting from the large-scale archiving of digitized whole-slide images (WSIs), computer-aided diagnosis
has been well developed to assist pathologists in decision-making. Content-based WSI retrieval can be a new
approach to find highly correlated WSIs in a historically diagnosed WSI archive, which has the potential
usages for assisted clinical diagnosis, medical research, and trainee education. During WSI retrieval, it is
particularly challenging to encode the semantic content of histopathological images and to measure the
similarity between images for interpretable results due to the gigapixel size of WSIs. In this work, we propose a
Retrieval with Clustering-guided Contrastive Learning (RetCCL) framework for robust and accurate WSI-level
image retrieval, which integrates a novel self-supervised feature learning method and a global ranking and
aggregation algorithm for much improved performance. The proposed feature learning method makes use of
existing large-scale unlabeled histopathological image data, which helps learn universal features that could be
used directly for subsequent WSI retrieval tasks without extra fine-tuning. The proposed WSI retrieval method
not only returns a set of WSIs similar to a query WSI, but also highlights patches or sub-regions of each WSI that
share high similarity with patches of the query WSI, which helps pathologists interpret the searching results.
Our WSI retrieval framework has been evaluated on the tasks of anatomical site retrieval and cancer subtype
retrieval using over 22,000 slides, and the performance exceeds other state-of-the-art methods significantly
(around 10% for the anatomic site retrieval in terms of average 𝑚𝑀𝑉@10). Besides, the patch retrieval using
our learned feature representation offers a performance improvement of 24% on the TissueNet dataset in terms
of 𝑚𝑀𝑉@5 compared with using ImageNet pre-trained features, which further demonstrates the effectiveness
of the proposed CCL feature learning method.
1. Introduction

In digital pathology, the glass slides are scanned into whole-slide
images (WSIs) with high resolution and gigapixel size, which pro-
vide rich cell-level information and have been allowed for clinical
diagnosis (Evans et al., 2018; Mukhopadhyay et al., 2018). However,
visual inspection on the entire WSI is very labor-intensive and time-
consuming. Computational pathology based on deep learning technolo-
gies has been emerged to facilitate the automation process of pathology
diagnoses, such as classification of cancer types (Campanella et al.,
2019; Lu et al., 2021; Xue et al., 2021), delineation of cancerous or
nuclear regions (Kumar et al., 2017), survival prediction (Shao et al.,
2020), image retrieval (Kalra et al., 2020a), etc. Benefiting from the
increasing amount of WSIs, WSI retrieval has recently attracted growing
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attention (Chen et al., 2021; Kalra et al., 2020a,b), which can return
a series of similar WSIs from a historically characterized database
when given a WSI for a query. These retrieved WSIs with associated
diagnosis information can help provide high interpretability, making it
possible in clinical diagnosis, medical research, and trainee education.
For example, WSI retrieval can improve diagnostic accuracy (especially
for a rare case) by finding cases with similar morphological features,
which may provide a possible virtual peer review to help build a
computational consensus.

Content-based image retrieval (CBIR) algorithm is a potential so-
lution for medical image retrieval which contains two stages: image
feature extraction and similar image retrieval on a pre-built
database (Hegde et al., 2019; Li et al., 2018). If the extracted features in
vailable online 1 October 2022
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the first stage cover the descriptive visual property of the image, similar
image retrieval can be regarded as a nearest-neighbor finding problem,
which indicates that a descriptive and robust data representation is the
core task of the CBIR task (Kalra et al., 2020a; Tizhoosh et al., 2021).

However, for the content-based WSI retrieval (WSI-CBIR), the gi-
gapixel size of WSI makes both the content feature extraction and
interpretability of searching results challenging. (1) Effective feature
extraction for semantic content in histopathological images is very
challenging due to the enormous heterogeneity within WSIs and intra-
/inter-class variations across WSIs. Moreover, WSI-level annotation
usually targets a tiny proportion of tissues within the WSI (called a
weak annotation). A pan-cancer and annotation-free feature extractor is
urgently required to overcome these issues to extract robust feature rep-
resentations. (2) For the WSI retrieval, it is more desirable to find WSIs
in which there exist diagnosis-relevant regions/patches rather than
retrieving WSIs with global similarity. Moreover, these target patches
may occupy a tiny part of the gigapixel WSI. These characteristics make
the task of WSI retrieval very challenging. A possible trick is to perform
local patch-by-patch retrieval and then globally aggregate these patch
retrieval results to return associated similar WSIs. However, due to the
sheer size of WSIs and their unbalanced tissue type distribution, it is
very challenging to develop a proper global aggregation algorithm.

Current histopathological image retrieval methods usually split
WSIs into patches and perform the patch-level retrieval (Ma et al.,
2016, 2018; Shi et al., 2017; Zhang et al., 2014; Zheng et al., 2017),
which requires exhaustive annotation for these sub-regions and could
not be flexibly expanded to WSI retrieval due to the lack of efficient
patch aggregation methods. An early WSI retrieval method directly
concatenated all the patch features as the global WSI embedding to
find similar WSIs by the nearest neighbor searching. However, the
overall WSI-level comparison approach equally treats tissue types and
fails to focus on clinically relevant sub-regions within the WSI. Two
recent studies have proposed suitable patch aggregation algorithms for
WSI retrieval. The difference is that Yottixel (Kalra et al., 2020a,b)
recognized WSIs through the ‘‘median-of-min’’ ranking approach, and
FISH (Chen et al., 2021) developed a nearest neighbor approach
based on the Van-Emde Boas-tree for the WSI retrieval. However,
their features depend entirely or partly on the ImageNet data, which
may result in suboptimal performance due to the domain difference
between natural and pathological images. Thus, an effective in-domain
feature extractor is urgently required to improve the feature extrac-
tion ability for histopathological images, ideally, in an unsupervised
manner. Self-supervised learning (SSL) without manual annotation has
become a promising method to improve the feature representation
ability for the histopathological image analysis (Dehaene et al., 2020;
Koohbanani et al., 2021; Li et al., 2021; Lu et al., 2019; Srinidhi
et al., 2021). However, these methods have not trained on a large-
scale and diverse domain-specific database. Meanwhile, their utilized
standard contrastive learning methods (e.g., SimCLR (Li et al., 2021)
and MoCo (Dehaene et al., 2020)) assume each sample is an individual
instance. When applied to WSIs, it may cause serious bias due to
the extremely unbalanced tissue type distribution and a large portion
of similar tissues within/across WSIs. For histopathological images,
negative pairs in the contrastive learning setting may be composed
of highly related samples, which could confuse the network training
process. In summary, for the broader application of WSI retrieval,
there is a need for robust content feature extraction in an unsupervised
manner and a global aggregation approach on the local patch retrieval
results to find the most similar WSIs.

To overcome the above-mentioned problems, this work proposes
a WSI retrieval framework (RetCCL) based on (1) clustering-guided
contrastive learning (CCL) for feature extraction and (2) distinctive
query patch selection, ranking for searched patches, and aggregation
algorithm for interpretable WSI searching. In the first stage, we propose
a CCL method to alleviate the effect of unfair assumption in tradi-
2

tional contrastive learning, where we use a subqueue-based weighted
InfoNCE and a between-instance-based group-level InfoNCE to learn
robust feature representations both at the instance-level and cluster-
level. In the second stage, we represent the entire WSI by combining
distinctive patches that are obtained by unsupervised feature-based
and space-based clustering approaches. Due to the unbalanced tissue
type distribution within WSIs, we perform a patch-by-patch retrieval
instead of the entire WSI searching to retrieve diagnosis-relevant sub-
regions/patches within similar WSIs. These retrieved patches are cu-
rated by our ranking and aggregation algorithm depending on the
entropy-based uncertainty measurement and cosine-similarity-based
constraint. The final retrieved patches are associated with their source
WSIs to obtain the most similar WSIs. Additionally, we also show
that RetCCL can perform patch retrieval to directly return a series of
relevant sub-regions when pathologists provide a sub-region as a query.

The main contributions of our work can be summarized as follows:

• We propose a novel WSI retrieval algorithm called RetCCL, which
includes a novel CCL-based feature extractor and a ranking and
aggregation algorithm for WSI retrieval. It can also provide inter-
pretable results by highlighting the diagnosis-relevant sub-regions
within WSIs to explain the searching mechanism behind our WSI
retrieval algorithm.

• Our CCL-based feature extractor is designed by integrating a
subqueue-based weighted InfoNCE and a between-instance-based
group-level InfoNCE into traditional contrastive learning to bal-
ance the ratio of positive/negative samples and map similar im-
ages closer.

• Our CCL pretraining is conducted using currently the largest
histopathological image database (around 15 million patches
cropped from more than 32,000 WSIs), covering diverse cell and
tissue types, cancer diagnoses, and organs, which helps extract a
pan-cancer feature extractor for WSI-CBIR.

• Benefiting from the above designs, RetCCL outperforms existing
WSI retrieval methods by a large margin. Our CCL-based feature
is also superior to the ImageNet pretrained feature or other SSL-
based features, which is verified in the patch retrieval experiment.
Our best-pretrained model has been released,1 which has the po-
tential to be a new feature extractor for various histopathological
image applications to replace the current widely used ImageNet
pretrained model.

2. Related work

This section conducts a literature review for self-supervised rep-
resentation learning and histopathological image retrieval considering
their relevance to our work.

2.1. Self-supervised representation learning

Self-supervised learning (SSL) aims to obtain high-level feature
representation by solving various pretext tasks using the supervision
of data itself. Early used pretext tasks include jigsaw puzzles (Noroozi
and Favaro, 2016), context prediction (Doersch et al., 2015), image
rotation prediction (Gidaris et al., 2018), image colorization (Zhang
et al., 2016), input re-construction (Van Den Oord et al., 2017), etc.,
which encourage the model to learn covariant feature representations
rather than invariant ones (Misra and Maaten, 2020). More recently,
contrastive learning as a special pretext task (instance discrimination)
has proven its superiority in the natural image field with the perfor-
mance even better than its corresponding supervised counterpart (Chen
et al., 2020b; He et al., 2020). It adopts two data augmentations from
the same image as a positive pair and those from different images as
negative pairs. The goal of network optimization is to pull together pos-
itive samples and repel away negative samples. Further improvement

1 https://github.com/Xiyue-Wang/RetCCL

https://github.com/Xiyue-Wang/RetCCL
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based on these methods tried to use a stronger backbone network like
MOBY (Xie et al., 2021) with Swin transformer (Liu et al., 2021), or
relax the strong assumption of positive/negative pairs by introducing
more robust objective functions (Foster et al., 2021; Tsai et al., 2021).

SSL has not yet been fully investigated in the field of histopatho-
logical image analysis (Dehaene et al., 2020; Koohbanani et al., 2021;
Li et al., 2021; Lu et al., 2019; Srinidhi et al., 2021). These stud-
ies include simple application of current SSL techniques (e.g., Sim-
CLR (Li et al., 2021), MoCo (Dehaene et al., 2020), and CPC (Lu
et al., 2019)) or their customized pretext tasks (e.g., magnification
prediction (Koohbanani et al., 2021; Srinidhi et al., 2021), solving
magnification puzzle (Koohbanani et al., 2021), and hematoxylin chan-
nel prediction (Koohbanani et al., 2021)). However, there are still
three aspects that could be further improved. First, most of these
studies simply transfer techniques from natural image applications to
the histopathology domain, which ignores the domain shift between
natural and histopathological images. Second, even if some pretexts
mentioned above are specifically designed for histopathological im-
ages, they focus on the relevant semantic features within the specific
tasks, resulting in limited model generalization. Defining a universal
pretext task for various histopathological image analysis tasks is still
challenging. Third, these works were not tested on large and diverse
histopathological image datasets.

2.2. Histopathological image retrieval

Histopathological image retrieval is driven by the prosperously
developed computer technology and the rapidly increasing number of
histopathological images, which adopts a small image patch (cropped
from WSI) or entire WSI as a query to retrieve images with similar
semantics from a pre-constructed historical database. We will review
current related studies from two aspects: patch-level and WSI-level
image retrieval.

A majority of histopathological image retrieval studies focus on
patches within WSIs (Ma et al., 2016, 2018; Shi et al., 2017; Zhang
et al., 2014; Zheng et al., 2017). Traditional hand-craft features are
adopted to describe morphological and textural characteristics of
patches, including SIFT descriptor (Zhang et al., 2014), color histogram
based feature (Ma et al., 2018), local statistical feature of nuclei (Ma
et al., 2016; Zheng et al., 2017), Gabor feature (Ma et al., 2016; Zheng
et al., 2017), GIST feature (Shi et al., 2017), and HOG descriptor (Shi
et al., 2017). These features require transformation functions prede-
fined by experts. Recently, the fast-developed deep learning method has
facilitated automatic high-level feature extraction (e.g., SIMLY (Hegde
et al., 2019)). In some above studies, these extracted features are usu-
ally compressed by supervised hashing code to reduce the calculation
and storage resources (Ma et al., 2018; Shi et al., 2017; Zhang et al.,
2014). Once the feature was extracted, similarity-score-based nearest
neighbor matching was usually used to find the most similar images.

There are only a few studies to be reported for WSI retrieval since
it is difficult to encode a full WSI using one feature vector (Akakin and
Gurcan, 2012; Chen et al., 2021; Kalra et al., 2020a,b). Akakin and
Gurcan (2012) manually picked core patches from WSI by pathologists
and extracted color and texture features for each patch, such as the
statistics information from various color spaces and histograms. These
patch features are accumulated as the WSI representation. A support
vector machine (SVM) was used to classify these WSI features into two
major disease types. Once the disease type was determined, the sequen-
tial image retrieval could be performed among the specific WSIs with
the same disease types. However, both the patch selection and SVM
training need manual intervention. Recently emerged Yottixel (Kalra
et al., 2020a,b) and FISH (Chen et al., 2021) approaches aim to
choose the most distinctive patches (called a mosaic) to represent the
entire WSI, which was achieved by K-means clustering based on the
RGB histogram and spatial coordinate features. Yottixel utilized the
3

ImageNet pretrained DenseNet to extract the patch embeddings and g
then convert them into binary barcodes for fast retrieval. Except for the
same features as Yottixel, FISH pretrained a VQ-VAE on TCGA to code
an integer index for each patch for retrieval. However, the simple usage
of the feature extractor pretrained from natural images may result in
suboptimal performance due to the domain shift between natural and
histopathological images.

3. Methods

The overview of our proposed WSI retrieval framework (RetCCL) is
presented in Fig. 1, which is implemented using a two-stage strategy,
including the CCL-based feature extractor in Fig. 1A and the WSI
retrieval process in Fig. 1B. The first stage introduces two loss functions
(weighted InfoNCE and group-level InfoNCE) to help extract robust
and universal features. The second stage is performed in two steps: (1)
offline database construction for WSI retrieval and (2) online WSI query
process. In addition to the WSI retrieval, our retrieval framework can
also be used for patch-level retrieval.

3.1. Contrastive-learning-based feature extractor

3.1.1. Preliminary of contrastive learning
Given an image 𝒙 and its two different augmented views: 𝒙𝑞 and 𝒙𝑘,

self-supervised contrastive learning method aims at pulling closer the
eatures (𝒒 and 𝒌+) of views from the same image while repelling away
he features (𝒒 and 𝒌−) of views from different images (Chen et al.,
020b; Chen and He, 2020; Grill et al., 2020; He et al., 2020; Wang
t al., 2021), which is defined by the InfoNCE loss InfoNCE (Van Den
ord et al., 2018) and is also used as the loss function in the MoCo
ethod (Chen et al., 2020a; He et al., 2020).

InfoNCE = − log
exp(𝒒 ⋅ 𝒌+∕𝜏)

exp(𝒒 ⋅ 𝒌+∕𝜏) +
∑𝐿

𝑖=1 exp(𝒒 ⋅ 𝒌−𝑖 ∕𝜏)
(1)

where 𝒒 and 𝒌+ are the encoded feature vectors of 𝒙𝑞 and 𝒙𝑘, while 𝒌−𝑖
epresents the 𝑖th negative sample from a memory bank. Temperature
is the hyperparameter that adjusts the smoothness of the loss func-

ion. 𝐿 denotes the length of the memory bank that is used to store
egative samples. The ⋅ denotes a dot product between two feature
ectors. 𝑓 and ℎ are shared feature extractors, where 𝑓 as a momentum
ncoder (He et al., 2020) is updated by
′ ← 𝑚 ⋅ 𝜽′ + (1 − 𝑚) ⋅ 𝜽 (2)

here the 𝜽′ and 𝜽 are the parameters of 𝑓 and ℎ, respectively.

.1.2. Proposed clustering-guided contrastive learning
Despite the success of self-supervised contrastive learning in recent

ears, its basic assumption about the negative samples is not suitable
or WSI. As shown in Eq. (1), all samples in the memory bank are
egarded as negative samples. However, just like Wang et al. (2021)
ave claimed, there may exist possible highly correlated samples, which
hould be considered as positive samples with respect to the anchor
ample 𝒙𝑞 , while they are repelled from the anchor sample in the
etting of the standard contrastive learning. Such a problem will be
ven more serious in the context of histopathological images, where
ifferent patches may actually come from the same tissues and have
trikingly similar appearances.

To alleviate this problem, we propose a clustering-based contrastive
earning method that includes a weighted InfoNCE (W-InfoNCE) and

group-level InfoNCE (G-InfoNCE) to modify the definition of posi-
ive/negative samples in the standard contrastive learning. The
W-InfoNCE is defined based on a subqueue strategy to reduce the effect
f possible false-negative samples in contrastive learning. Benefiting
rom Wang et al. (2021), the G-InfoNCE obtains distinctive group centers
nd encourages the anchor sample and its nearest group center to have
igher similarity while enforcing the anchor sample and the remaining
roup centers to have a lower similarity.
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Fig. 1. Overview of our proposed WSI retrieval architecture (RetCCL), which contains two stages: (A) CCL-based feature extractor and (B) WSI retrieval. In (A), weighted InfoNCE
and group-level InfoNCE loss functions are integrated for a better positive/negative ratio. The clustering-guided memory bank contains 𝑄 smaller sub-memory queues. New input
features 𝒈𝑘 will be queued into the queue (cluster) that is most similar to 𝒈𝑘. The group-level InfoNCE loss is calculated by swapped predictions to map similar images closer.
(B) The WSI retrieval procedure consists of two steps: (i) offline database construction for all reference WSIs and (ii) online WSI query process. In (i), two techniques are mainly
leveraged. The first technique is the newly designed CCL-based feature extraction that makes use of existing large-scale public histopathological image databases. The second is
the mosaic generation technique based on a double-clustering method applied within a WSI to obtain its most representative patches. The first K-means clustering relies on our
CCL-based features. The coordinates of patches in each cluster obtained in the first clustering are used as features for the second clustering. These patches closest to the clustering
centers are selected as the final WSI representation. The red dots in ‘‘Clustering based on coordinates’’ denote the centroids of the final clusters. The small blue boxes in ’’Selecting
representative patches’’ represent the selected patches within the WSI. In (ii), the WSI query step contains similar feature extraction and mosaic generation procedures as introduced
in (i). Then these selected patches within the WSI are respectively used to complete the retrieval task and return a set of similar patches from the pre-built database. Finally, the
nearest neighbor search, ranking, and aggregation algorithms are applied to determine the final WSI-level retrieval results.
The overview of our proposed CCL method is shown in Fig. 1A. It
augments input image 𝒙 three times and obtains 𝒙𝑝, 𝒙𝑘, and 𝒙𝑞 . Then,
two encoders 𝑓 and ℎ with the same structures but slightly different
parameters are applied to transfer these input images to high-level
semantic space R𝑑 , resulting in 𝒉𝑝, 𝒇𝑘, and 𝒉𝑞 . The encoder branch 𝑓 is
updated by moving average as mentioned above. Then, two MLP heads
𝑔1 and 𝑔2 are used to project the 𝒉𝑝 into {𝒈𝑝1 , 𝒈𝑝2} and the 𝒉𝑞 into {𝒈𝑞1 ,
𝒈𝑞2}, respectively. 𝑔2 is also used to project 𝒇𝑘 into 𝒈𝑘. The 𝒈𝑝2 , 𝒈𝑞2 ,
and 𝒈 are further combined to calculate our weighted InfoNCE loss,
4

𝑘

while 𝒈𝑝1 and 𝒈𝑞1 are used to cluster within a batch for the calculation
of group-level InfoNCE loss. The final loss function is the combination
of the two loss functions, which will be introduced in the following.

Online Clustering-guided Memory Bank Construction. Based on
the basic contrastive learning framework mentioned earlier (He et al.,
2020), we introduce an online clustering-guide memory bank to reduce
the influence of potential false-negative samples. A weighted InfoNCE
loss is proposed to give less weight on these false-negative-like samples
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with respect to the anchor feature embedding 𝒈𝑝2 or 𝒈𝑞2 as shown in
Fig. 1A. The detailed calculation process will be introduced as follows.

In each training epoch, as shown in Fig. 1A, we respectively take
{𝒈𝑝2 , 𝒈𝑘} and {𝒈𝑞2 , 𝒈𝑘} as two positive pairs to perform contrastive
learning with a shared memory bank. Negative samples are weighted
using a clustering process. Specifically, all negative samples within
the memory bank are first clustered into 𝑄 classes using the K-means
approach, which are called 𝑄 sub-memory queues. Their centroids are
represented as {𝒄1,… , 𝒄𝑗 ,… , 𝒄𝑄}. Next, the similarity scores between
the input feature 𝒈𝑘 and each centroid 𝒄𝑗 (𝑗 = 1, 2,… , 𝑄) are calculated
as {𝑆𝑖𝑚1,… , 𝑆𝑖𝑚𝑗 ,… , 𝑆𝑖𝑚𝑄}. The maximum of these similarity scores
can be obtained as 𝑆𝑖𝑚𝑚𝑎𝑥, which corresponds to the cluster 𝑄𝑚𝑎𝑥
whose centroid is most similar to 𝒈𝑘. Then, the weight 𝜙(𝒈𝑘−𝑖 ) for each
negative sample in the memory bank can be calculated by

𝜙(𝒈𝑘−𝑖 ) =

{

𝑤, if 𝒈𝑘−𝑖 ∈ 𝑄𝑚𝑎𝑥

1, otherwise
, where 𝑤 ∈ [0, 1) (3)

That is, the weighted InfoNCE will assign a smaller weight (𝑤 ∈ [0, 1))
for these negative samples within the cluster 𝑄𝑚𝑎𝑥 that is most similar
to 𝒈𝑘. For other samples in the memory bank, a higher weight of 1 is
set. Accordingly, the weighted InfoNCE loss W-InfoNCE can be defined
as
W-InfoNCE =

− 1
2
log

exp(𝒈𝑝2 ⋅ 𝒈𝑘∕𝜏)

exp(𝒈𝑝2 ⋅ 𝒈𝑘∕𝜏) +
∑𝐿

𝑖=1 exp(𝜙(𝒈𝑘−𝑖 ) ⋅ 𝒈𝑝2 ⋅ 𝒈𝑘−𝑖 ∕𝜏)

− 1
2
log

exp(𝒈𝑞2 ⋅ 𝒈𝑘∕𝜏)

exp(𝒈𝑞2 ⋅ 𝒈𝑘∕𝜏) +
∑𝐿

𝑖=1 exp(𝜙(𝒈𝑘−𝑖 ) ⋅ 𝒈𝑞2 ⋅ 𝒈𝑘−𝑖 ∕𝜏)

(4)

where the two terms correspond to taking {𝒈𝑝2 , 𝒈𝑘} and {𝒈𝑞2 , 𝒈𝑘} as the
positive pairs, respectively.

At the beginning of the training process, to initialize the 𝑄 centroids
of these sub-memory queues, we randomly feed 𝑇 histopathological
images into our encoder that is initialized by its pretrained weights
on the ImageNet data. These features are then clustered into 𝑄 initial
clusters, which produces 𝑄 different classes. During each iteration, each
cluster centroid is updated by

𝒄𝑗∗ ← 𝑚𝑐𝒄𝑗 +
(

1 − 𝑚𝑐
)

⋅
1

|

|

|

𝑗
|

|

|

∑

𝒈𝑖𝑘∈𝑗

𝒈𝑖𝑘 (5)

here 𝒄𝑗∗ denotes the updated 𝑗th cluster centroid, 𝑚𝑐 ∈ [0, 1] rep-
esents a weighting factor, 𝑗 denotes the feature set of the 𝑗th class
cluster) in the current mini-batch, 𝒈𝑖𝑘 represents the 𝑖th feature vector
n the mini-batch, and 1∕ ||

|

𝑗
|

|

|

(
∑

𝒈𝑖𝑘∈𝑗
𝒈𝑖𝑘) calculates the mean value of

features for the 𝑗th class in the current mini-batch. At each epoch,
all clustering centroids will be updated by re-clustering all negative
samples in the memory bank.

Group-level Discrimination. Inspired by the cross-level discrimina-
tion (CLD) loss function (Wang et al., 2021), we add the CLD as an
auxiliary branch to further mitigate the unbalanced positive/negative
sample ratio brought by the basic assumption of instance discrimination
in standard contrastive learning. As shown in Fig. 1A and explained
earlier, an MLP head 𝑔1 is attached to the encoder ℎ to obtain new
embeddings 𝒈𝑝1 and 𝒈𝑞1 , corresponding to the two augmented views,
𝑥𝑝 and 𝑥𝑞 , respectively. Embeddings from all samples in one mini-batch
are then clustered into 𝑆 clusters for each of the two augmented view
branches, and their centroids are denoted respectively as 𝑺𝑝

𝑗 and 𝑺𝑞
𝑗 ,

where 𝑗 ∈ [1, 2,… , 𝑆]. Then, given a query instance, we compare its
augmented view embedding (𝒈𝑝1 or 𝒈𝑞1 ) with cluster centroids in the
opposite branch to define positive and negative pairs for computing the
group-level InfoNCE loss. For example, given 𝒈𝑝1 , its positive sample is
defined as the closest centroid (denoted as 𝑺𝑞+) in the 𝑥𝑞 branch. The
5

remaining 𝑆-1 centroids are defined as negative samples, denoted as
𝑺𝑞−
𝑖 , where 𝑖 ∈ [1, 2,… , 𝑆 − 1]. In summary, the group-level InfoNCE

loss G-InfoNCE (CLD loss) is given by

G-InfoNCE =

− 1
2
log

exp(𝒈𝑝1 ⋅ 𝑺
𝑞+∕𝜏)

exp(𝒈𝑝1 ⋅ 𝑺
𝑞+∕𝜏) +

∑𝑆−1
𝑖=1 exp(𝒈𝑝1 ⋅ 𝑺

𝑞−
𝑖 ∕𝜏)

− 1
2
log

exp(𝒈𝑞1 ⋅ 𝑺
𝑝+∕𝜏)

exp(𝒈𝑞1 ⋅ 𝑺
𝑝+∕𝜏) +

∑𝑆−1
𝑖=1 exp(𝒈𝑞1 ⋅ 𝑺

𝑝−
𝑖 ∕𝜏)

(6)

Our final loss function is calculated as the sum of the weighted
InfoNCE loss and the group-level InfoNCE loss by

 = W-InfoNCE + 𝜆G-InfoNCE (7)

where 𝜆 is a hyperparameter that controls the contribution of the two
loss functions.

3.2. WSI retrieval method

3.2.1. Preliminary of WSI retrieval
Due to the unique WSI characteristics, WSI-CBIR is usually im-

plemented in two stages: offline WSI feature extraction and similar
WSI searching. For feature extraction, a DenseNet pre-trained on Im-
ageNet data in a supervised manner is used in the two existing WSI
retrieval methods (Yottixel (Kalra et al., 2020a) and FISH (Chen et al.,
2021)). The Yottixel method solely uses the pretrained DenseNet to
extract patch features. In the FISH method, the pre-trained DenseNet
is used as the feature encoder to generate discrete latent code, whereas
another encoder of VQ-VAE pre-trained on TCGA data is used to
generate texture features. In both methods, the extracted features are
further compressed into binary codes for faster retrieval. Once the
patch feature extractor is determined, the subsequent WSI searching
can be performed in two steps: database construction and runtime
searching. First, each WSI is reduced to a set of patches, for which a
dual clustering method is used in both the Yottixel and FISH methods.
The feature vectors of these patches are used to represent each WSI
and a searching database can then be constructed. During the runtime
searching process, a query WSI is also converted into a set of patches
and a patch-by-patch matching is performed to retrieve the most similar
patches in the database, which are then projected to find corresponding
most relevant WSIs. To reduce false matches, Yottixel proposes a simple
‘‘median-of-min’’ approach and computes a Hamming distance as the
matching score for each retrieved patch. Those retrieved patches with
Hamming distances below a threshold score will be kept, and others are
removed. The FISH method develops a more sophisticated searching
and ranking approach that combines a Van Emde Boas tree with
an uncertainty-based ranking algorithm to achieve fast and accurate
WSI retrieval. Retrieved patches with high uncertainty and low cosine
similarity scores are removed before selecting corresponding WSIs.

3.2.2. Proposed WSI retrieval method
Our WSI retrieval algorithm differs from the previous Yottixel and

FISH methods in two aspects. First, we employ our histopathology-
image-pretrained real-valued features for patch representation, whereas
previous methods mainly use ImageNet-pretrained binary features. The
simple use of out-of-domain data may lead to suboptimal performance
due to the large domain difference between histopathological and
natural images. Our in-domain features ensure more informative and
histopathology-specific feature representations. Second, we propose a
simple but effective searching, ranking, and aggregation algorithm
for WSI retrieval. Unlike the simple ‘‘median-and-min’’ strategy used
by Yottixel, our method fully considers the characteristics of WSIs
to remove uninformative patches, which ensures more accurate WSI
retrieval results. FISH proposes a complex codebook-based vEB tree
retrieval, which first utilizes the vEB tree to find roughly similar patches
and then uses Hamming distance to find the best matches. Thus, its
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Algorithm 1 Database Construction for WSI Retrieval
1: 𝐷𝑠 ← 16 ⊳ Downsample for segmentation
2: MPP ← 1.0 ⊳ Magnification for patching
3: 𝑆𝑝 ← 512 ⊳ Size of patch
4: 𝐾1 ← 9 ⊳ First clustering number
5: 𝑅 ← 0.2 ⊳ Second clustering ratio
6: 𝑮 ← {} ⊳ Set of all selected features
7: for 𝑰 ∈ All WSIs do
8: procedure MosaicGeneration(𝑰 , 𝐷𝑠,MPP, 𝑆𝑝, 𝐾1, 𝑅)
9: 𝒇 = {}

10: 𝑺 ← 𝑠𝑒𝑔𝑚𝑒𝑛𝑡(𝑰 , 𝐷𝑠) ⊳ Foreground segment for WSI
11: 𝒑 ← 𝑝𝑎𝑡𝑐ℎ𝑖𝑛𝑔(𝑺,MPP, 𝑆𝑝) ⊳ Obtain all patches
12: 𝒇 𝑎𝑙𝑙 ← 𝑚𝑜𝑑𝑒𝑙(𝒑) ⊳ Obtain all features
13: 𝑭 𝑖 ← FeatureKMeans(𝒇 𝑎𝑙𝑙 , 𝐾1) ⊳ Feature clustering
14: for 𝑖 ∈ 𝐾1 do 𝑤ℎ𝑒𝑟𝑒, 𝑖 = 1, 2, ..., 𝐾1
15: 𝒇 𝑟𝑒𝑝 ← SpatialKMeans(𝑭 𝑖, 𝑅) ⊳ Coordinate clustering
16: 𝒇 ← 𝒇 ∪ 𝒇 𝑟𝑒𝑝
17: end for
18: return 𝒇 ⊳ Return representative patch features
19: end procedure
20: 𝑮 ← 𝑮 ∪ 𝒇
21: end for
22: return 𝑮 ⊳ Return mosaic database for WSI retrieval

retrieval results depend heavily on the accuracy of these roughly similar
patches. In addition, many parameters are used in the tree (e.g., thresh-
old of Hamming distance and the number of times for addition and
deduction, etc.), and careful parameter setting may be required when
applying them to new data. Unlike FISH, our method directly uses
cosine-similarity-based nearest neighbor searching to find the most
similar patches, which has no additional handcrafted parameters and
can be directly applied to any new data.

The overall procedure of our WSI retrieval has been described in
Fig. 1B, which contains a two-step operation. In the first step, as shown
in Fig. 1B, WSIs are first cropped into patches and these patches are
encoded into content-relevant representations (patch features) using
our customized CCL-based feature extractor. For each WSI, CCL-feature-
based and spatial-coordinate-based clustering algorithms are used to
generate a small number of distinctive patches (called a mosaic) to
represent the full WSI. An effective mosaic generation can greatly
reduce the storage and calculation burden. In the second step, when
querying a WSI, our method first extracts feature representations for
patches within the WSI, and then performs mosaic generation to obtain
a representative mosaic. Next, these obtained patches are respectively
adopted as the new query images to conduct patch-level retrieval
using a nearest neighbor searching method. Finally, based on these
retrieved patches along with their meta-information, our ranking and
aggregation algorithm is used to find their associated similar WSIs. The
meta-information includes the WSI name and its original diagnosis,
patch locations within its associated WSI, and the similarity score
between each patch and its corresponding query patch. Benefiting from
the meta-information, our RetCCL can highlight the diagnosis-relevant
regions within WSIs to help provide interpretability for pathologists.
The following section will introduce the two steps in detail.

Database Construction for WSI Retrieval. A large database is re-
quired to be constructed to perform feature matching. The detailed
process is shown in Fig. 1B and Algorithm 1. A WSI is pre-processed by
threshold technique to extract foreground tissue regions (Campanella
et al., 2019) and then cropped into small patches based on a sliding
window technique. These patches are then fed into our CCL model
to obtain their corresponding feature vectors, denoted as 𝒇 𝑎𝑙𝑙. Next,
a mosaic generation method is conducted within a WSI based on a
double-clustering method. In the first K-means clustering, 𝐾1 distinc-
tive classes within the WSI are obtained, which are represented by
6

{𝑭 1,𝑭 2,… ,𝑭 𝑖,… ,𝑭𝐾1
}. Then, each cluster is further re-clustered into
Algorithm 2 WSI Query Process
1: 𝒘𝑦 ← 𝑤𝑦1 , ..., 𝑤𝑦𝑚 , ..., 𝑤𝑦𝑈 ⊳ Weight of each diagnosis in the database
2: WSI = {𝑷 1,𝑷 2, ...,𝑷 𝑖...,𝑷 𝑘} ⊳ Given a query WSI with k patches
3: 𝐵𝑎𝑔 = {B1,B2, ...,B𝑖...,B𝑘} ⊳ A bag contains a query patch and its

retrieved patches
4: B𝑖 = {𝒃1𝑖 , 𝒃

2
𝑖 , 𝒃

𝑗
𝑖 ..., 𝒃

𝑡
𝑖} ⊳ Each query patch retrieves 𝑡 patches

5: procedure Calculate entropy for each bag
6: for B𝑖 ∈ 𝐵𝑎𝑔 do ⊳ A bag B𝑖 has 𝑢𝑖 associated WSI diagnosis
7: D = CosineSimilarity(𝑷 𝑖,B𝑖) ⊳ Calculate cosine similarity, where

D = {𝑑1, 𝑑2, ..., 𝑑𝑗 ..., 𝑑𝑡}
8: 𝑝𝑚 = Probability(𝒘𝑦,D,B𝑖) ⊳ Probability calculated for the 𝑚𝑡ℎ

diagnosis occurrence within a bag
9: 𝐸𝑛𝑡𝑖 = −

∑𝑢𝑖
𝑚=1 𝑝𝑚 ⋅ log

(

𝑝𝑚
)

⊳ Entropy within a bag
10: end for
11: 𝐵𝑎𝑔′ = {B1,B2,B𝑖...,B𝑘} ⊳ Reorder bag by entropy
12: end procedure
13: procedure Remove bags with low quality
14: 𝜂 = 1

𝑘

∑𝑘
𝑖=1 AveTop{B𝑖} ⊳ Means of cosine similarity scores in top-5

15: 𝐵𝑎𝑔′′ = {B1,B2,B𝑖...,B𝑘′} ⊳ Remove bags with small 𝜂
16: end procedure
17: for B𝑖 ∈ 𝐵𝑎𝑔 do ⊳ Vote for each diagnosis within a bag
18: B𝑖 = {𝒃1𝑖 , 𝒃

2
𝑖 , 𝒃

𝑗
𝑖 ..., 𝒃

5
𝑖 } ⊳ Obtain the top-5 samples in each bag

19: 𝑾 𝑖 ← B𝑖 ⊳ Majority vote to obtain associated WSI for each bag
20: end for
21: WSIRet = {𝑾 1,𝑾 2,𝑾 𝑖...,𝑾 𝑘′′} ⊳ Find similar WSIs
22: return WSIRet[1 ∶ 𝑘] ⊳ Return top-k similar WSIs

𝐾2 sub-classes using their spatial coordinates as features, where 𝐾2 =
𝑜𝑢𝑛𝑑(𝑅 ⋅ 𝑛), 𝑅 is a ratio parameter and is set as 20%, and 𝑛 is the
umber of patches within each cluster 𝑭 𝑖. Last, the patches in these
inal clustering centroids are adopted as the representation of the WSI.

SI Query Process. After building the WSI database, the subsequent
SI retrieval can be regarded as a patch-level nearest neighbor match-

ng, ranking, and aggregation process, which is illustrated in Fig. 1B
nd Algorithm 2. As shown in Fig. 1B, given a query WSI, feature
ncoding and mosaic generation are first performed to obtain the
eature embedding of the query WSI. Consequently, the query WSI
an be represented as a mosaic with 𝑘 patches, such as 𝑊𝑆𝐼 =
𝑷 1,𝑷 2,… ,𝑷 𝑖...,𝑷 𝑘}, where 𝑷 𝑖 denotes feature vector of the 𝑖th patch,

and 𝑘 denotes the total number of patches within the WSI. Next, each
patch will be adopted as a query image to generate the corresponding
retrieval results that are stored in 𝑘 bags 𝐵𝑎𝑔𝑠 = {B1,B2,… ,B𝑖...,B𝑘},
where the 𝑖th bag B𝑖 = {𝒃1𝑖 , 𝒃

2
𝑖 , 𝒃

𝑗
𝑖 ..., 𝒃

𝑡
𝑖} contains 𝑡 retrieved patches

along with their cosine similarity scores calculated with the query patch
𝑷 𝑖. In other words, cosine similarity scores {𝑑1,… , 𝑑𝑗 ,… , 𝑑𝑡} can be
computed between 𝑷 𝑖 and each sample in B𝑖. Note that 𝑡 varies for
different bags.

Based on these obtained bags and inspired by FISH (Chen et al.,
2021), we propose a simple but effective ranking and aggregation
algorithm to select the most promising bags. Entropy with the ability
of uncertainty measure is used to calculate the uncertainty of each
bag. According to the definition of entropy, if these patches within a
bag have diverse distribution, a high entropy is generated, indicating
a high uncertainty of the bag and its corresponding query patch,
and vice versa. For example, if these retrieved patches within a bag
show the same diagnosis (obtained from WSI-level meta-information),
the entropy of the bag will be 0. Note that the patches in our pre-
built database carry their associated meta-information (e.g., WSI name,
original diagnosis at WSI level, patch location within the WSI, etc.).
Thus, these retrieved patches can be considered to have pseudo-labels
obtained from their associated WSI-level diagnosis information. Based
on the above descriptions, our entropy is calculated by

𝐸𝑛𝑡𝑖 = −
𝑢𝑖
∑

𝑝𝑚 ⋅ log
(

𝑝𝑚
)

(8)

𝑚=1
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where 𝐸𝑛𝑡𝑖 denotes the entropy of the 𝑖th bag B𝑖. 𝑢𝑖 represents the total
number of diagnosis types within the bag B𝑖, which will be the number
f anatomical sites or the number of cancer subtypes in one specific
ancer. 𝑝𝑚 denotes the probability of the 𝑚th diagnosis type occurring
n a bag, which is calculated as

𝑚 =

∑𝑡
𝑗=1 𝛿(𝑦𝑗 , 𝑚) ⋅𝑤𝑦𝑗 ⋅

(

𝑑𝑗 + 1
)

∕2
∑𝑡

𝑗=1 𝑤𝑦𝑗 ⋅
(

𝑑𝑗 + 1
)

∕2
(9)

here 𝑦𝑗 ∈ {1,… , 𝑚,… , 𝑢𝑖} represents the diagnosis information
pseudo-label) saved in the 𝑗th retrieved sample within the bag. 𝛿() is a
iscriminant function that determines whether its two inputs are equal.
n this scene, 𝛿(𝑦𝑗 , 𝑚) judges whether the current sample belongs to the
th diagnosis type, which will output 1 if it is and 0 otherwise. 𝑤𝑦𝑗 is

he occurrence frequency (normalized probability) of the 𝑗th diagnosis
ype (pseudo class) in the database, which can be obtained once the WSI
etrieval database is constructed. As mentioned above, 𝑑𝑗 represents
he cosine similarity between the query patch and its corresponding
etrieved the 𝑗th patch within the current bag. We use (𝑑𝑗 + 1)∕2 to
uarantee that the range is between 0 and 1. To better understand this
quation, we can regard the 𝑤𝑦𝑗 ⋅

(

𝑑𝑗 + 1
)

∕2 as a weighted score 𝑣𝑗 to
epresent the 𝑗th sample within the bag. The denominator represents
he sum of the scores of all samples, and the numerator represents the
um of scores for samples with only the 𝑚th diagnosis type. Based on
hese calculations, we can reorder these bags in descending order based
n their entropy to obtain new bags 𝐵𝑎𝑔′ = {B1,B2,B𝑖...,B𝑘}.

Since patches in each bag are sorted in descending order of cosine
imilarity, our second ranking algorithm depends on the means of
osine similarity stored in the top-5 most similar patches, which can
e described by

= 1
𝑘

𝑘
∑

𝑖=1
𝐴𝑣𝑒𝑇 𝑜𝑝{B𝑖} (10)

here B𝑖 and 𝑘 represent the 𝑖th bag and the total number of bags,
espectively. 𝐴𝑣𝑒𝑇 𝑜𝑝 denotes the average of the top-5 cosine sim-
larity scores within the bag. 𝜂 is adopted as the criterion to re-
ove bags whose average cosine similarity scores are smaller than

he 𝜂. Then a new bag sequence 𝐵𝑎𝑔′′ = {B1,B2,B𝑖...,B𝑘′} can be
enerated. We adopt patches in the top-5 bags as the most similar
etrieval results, which are projected as the most similar WSIs using
he meta-information carried in each patch.

.3. Patch retrieval method

The patch retrieval can be regarded as a special case of WSI retrieval
here the number of patches within each WSI is set as one. Thus,

here is no need for any complex ranking and aggregation algorithm.
imilar to the WSI retrieval, there are also two steps for patch retrieval:
atabase construction and patch query process. In the first step, the
atch-level searching database is built based on diagnosed patches, the
eature vectors of which are extracted using the proposed CCL method.
pecifically, the finally adopted features are extracted from the output
f the last pooling layer of the CCL-pretrained encoder (ResNet50). In
he second step, the cosine similarity scores between an input query
atch and all patches in the database are calculated and ranked from
igh to low. Then, the top-k similar patches are directly taken as the
eturns of the search engine.

. Experimental results and discussions

This section first introduces five datasets utilized for our CCL-based
retraining, histopathological image retrieval procedures, and down-
tream classification. Then, the experimental setups in the training
rocess and evaluation metrics for the image retrieval and downstream
lassification are described in detail. The remaining parts cover a series
7

f validation experiments presented in terms of patch-level retrieval,
SI-level retrieval, and downstream classification. Patch-level retrieval
ith strong dependencies of the feature representation is conducted to
alidate the effectiveness of our CCL-based features. Our patch retrieval
xperiment includes ablation studies and cancer subtype retrieval ex-
eriments compared with other SSL-based patch retrieval methods. The
SI retrieval experiment contains anatomical site retrieval, cancer sub-

ype retrieval, and interpretability analysis. The classification is simply
onducted to verify the generalizability of our feature representations.

.1. Datasets

The datasets utilized in this work include the cancer genome at-
as dataset (TCGA), pathology AI platform (PAIP), UniToPatho, and
iagSet-A.2. In the backbone network training procedure, unlabeled
atches extracted from TCGA and PAIP are used for our unsupervised
retraining. In the testing process, WSIs from the TCGA with WSI-level
nnotations are used to evaluate the WSI retrieval performance and
he patches from UniToPatho and TissueNet datasets are used for patch
etrieval assessment. It is noted that our WSI retrieval process adopts
similar number of WSI as the Yottixel (Kalra et al., 2020a,b) and

ISH (Chen et al., 2021) approaches to keep a fair comparison. Our
ownstream classification experiment is conducted on the DiagSet-A.2
ataset. The details of each dataset are introduced below.
TCGA. TCGA2 is a pan-cancer WSI dataset provided by the National

nstitutes of Health (NIH). It contains more than 30,000 WSIs (normal
nd cancerous) acquired from around 11,000 patients, which covers
5 anatomic sites with 32 cancer subtypes and is prepared with both
rozen and diagnostic (formalin-fixed paraffin-embedded, FFPE) slides.
nnotations for the anatomic sites and cancer subtypes are provided at

he WSI level. After removing WSIs without magnification information,
e finally collected a total of 29,763 WSIs from 10,953 patients for our
SL pretraining. In the preprocessing procedure, we first use the Otsu
hreshold method to obtain a binary foreground mask for each WSI.
hen, all the WSIs are cropped into patches with the size of 1, 024×1, 024
ixels at 20×, which results in a total of 14,325,848 patches for SSL
retraining.
PAIP. PAIP3 (Kim et al., 2021) contains 2457 WSIs, covering six

ancer types (liver, renal, colorectal, prostatic, pancreatic, and cholan-
io cancers). It is noted that PAIP includes detailed local region an-
otations, but this work does not use any label information in the
SL pretraining process. Following the same patch cropping strat-
gy as the TCGA dataset mentioned above, we obtained a total of
,254,414 unlabeled patches with the size of 1, 024 × 1, 024 pixels for
SL pretraining.
UniToPatho. UniToPatho4 (Barbano et al., 2021) is a patch-level

ataset released to classify each colorectal polyp image into one of
our types: normal tissue (NORM), hyperplastic polyp (HP), tubular
denoma (TA), and tubulo-villous adenoma (TVA). There are 8699
atches with a size of 1, 812 × 1, 812 pixels (0.4415 microns-per-pixel
t 20 ×) cropped from 292 WSIs by its provider.
TissueNet. TissueNet5 is built to classify epithelial lesions of the

terine cervix at the patch level, including benign, low malignant
otential tissue, high malignant potential tissue, and invasive cancer
issue. As introduced by its provider, there are 5926 labeled patches
ith a fixed size of 300 × 300 micrometers cropped from 1016 WSIs

around four patches for each WSI). The size of 300 × 300 micrometers
orresponds to around 1200 × 1200 pixels.
DiagSet-A.2. DiagSet-A.26 is a patch-level dataset for prostate can-

er classification (Koziarski et al., 2021). The classification experiment

2 https://portal.gdc.cancer.gov/
3 http://wisepaip.org/paip
4 https://ieee-dataport.org/open-access/unitopatho
5 https://www.drivendata.org/competitions/67/competition-cervical-

iopsy/page/254/
6
 https://ai-econsilio.diag.pl/

https://portal.gdc.cancer.gov/
http://wisepaip.org/paip
https://ieee-dataport.org/open-access/unitopatho
https://www.drivendata.org/competitions/67/competition-cervical-biopsy/page/254/
https://www.drivendata.org/competitions/67/competition-cervical-biopsy/page/254/
https://ai-econsilio.diag.pl/
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aims to classify each image into one of four classes: Normal, Gleason
score 3, Gleason score 4, and Gleason score 5. These images have a pixel
size of 224 × 224 under a magnification of 5×. The dataset provider
plits the dataset into a training set (48,782 patches from 346 WSIs),
validation set (8977 patches from 42 WSIs), and a test set (10,836

atches from 42 WSIs).

.2. Experimental setups

In our WSI retrieval architecture, only the CCL model requires
etwork training. To keep a fair comparison with other SSL methods,
e adopt ResNet50 (He et al., 2016) as the backbone model. For the

onstruction of multiple sub-memories, the number of cluster centers
s set as 25 (𝑄 = 25) according to the ablation experiment. The length
f each queue (sub-memory bank) is set as 2048 to make the size to
e comparable with MoCo v2 (Chen et al., 2020a; He et al., 2020).
∈ [0, 1) is a momentum coefficient as defined in the MoCo v2

aper. Following the original MoCo v2 method, we set 𝑚 to 0.999 and
emperature 𝜏 to 0.07 in W-InfoNCE. In G-InfoNCE, 𝑆 is set to 30 based
n the ablation experiment. The 𝜆 in our final loss is set as 0.25 for the
G-InfoNCE.

A cosine learning rate scheduler (Loshchilov and Hutter, 2016) with
n initial learning rate of 0.1 is used for model training. The batch size
s set as 2048 during training. Following MoCo v2, an SGD optimizer
ith momentum 0.9 and weight decay of 1𝑒 − 4 is hired to update the
odel. Similar to SimCLR (Chen et al., 2020b), our data augmenta-

ion strategies include Gaussian blur, color jittering, horizontal/vertical
lipping, and random crop and resize.

We also train other SSL methods for comparison, including SimCLR
17 (Chen et al., 2020b), SwAV8 (Caron et al., 2020), and MoCo
29 (Chen et al., 2020a; He et al., 2020). All the models are trained with
heir corresponding open-source implementations and default configu-
ations, only the augmentation methods and training data are changed
o be the same as ours. All these compared SSL methods use ResNet50
s their backbone model, same as in our method. We initialize the
esNet50 backbone using its ImageNet pretrained weights before self-
upervised training, as also suggested by previous studies (Yan et al.,
022; Azizi et al., 2021). For a fair comparison, we do not include
imCLR v2 and MoCo v3 because they use different backbone models.
imCLR v2 aims to improve the feature learning ability by using a much
arger ResNet model (i.e., ResNet-152 (3×+SK)) as the backbone. MoCo
3 is specifically designed using a Transformer backbone.

A downstream classification experiment is conducted to further val-
date the robustness of our feature learning method. It is implemented
sing a linear evaluation, that is, a fully connected layer is attached
o the output of the frozen CCL-based backbone model for classifier
raining. The mini-batch size is set to 48. Adam is adopted as the
ptimizer with an initial learning rate of 0.0003.

Our SSL pretraining experiments are implemented on the PyTorch
latform and 32 Nvidia V100 32G GPU cards. Each model is trained for
00 epochs and takes roughly 300 h to converge due to a large amount
f training data. To the best of our knowledge, this work is the first
eature representation with such large-scale histopathological images.

.3. Evaluation metrics

Accuracy (Acc) and F1 score are used to evaluate our downstream
lassification experiments. 𝐴𝑐𝑐@𝑘 (top-𝑘 accuracy) and 𝑚𝑀𝑉@𝑘 (ma-
ority vote at the top 𝑘 search results) are used as evaluation metrics
or our image retrieval task. 𝐴𝑐𝑐@𝑘 is widely used for histopathological
mage retrieval (Hegde et al., 2019; Kalra et al., 2020a,b). If any

7 https://github.com/google-research/simclr
8 https://github.com/facebookresearch/swav
9
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https://github.com/facebookresearch/moco b
of the retrieved similar images have the correct label as the query
image, 𝐴𝑐𝑐@𝑘 will think that the search task at this time is successful.
Compared with 𝐴𝑐𝑐@𝑘, 𝑚𝑀𝑉@𝑘 is a more strict metric since 𝑚𝑀𝑉@𝑘
thinks that if most of the retrieved results are correct compared with
the query sample, this search will be considered successful. The two
metrics are calculated by

𝐴𝑐𝑐@𝑘 = 1
𝑁

𝑁
∑

𝑖
𝜉(𝒂𝑖, 𝑇𝑂𝑃 (𝑎𝑛𝑠𝑖[∶ 𝑘])) (11)

𝑚𝑀𝑉@𝑘 = 1
𝑁

𝑁
∑

𝑖
𝛿(𝒂𝑖,𝑀𝑉 (𝑎𝑛𝑠𝑖[∶ 𝑘])) (12)

Where 𝑁 is the number of query patches/WSIs and 𝒂𝑖 is the label
of the 𝑖th query patch/WSI. 𝑇𝑂𝑃 (𝑎𝑛𝑠𝑖[∶ 𝑘]) returns top-𝑘 retrieved
esults. 𝜉 is used to compare the labels of top-𝑘 results with the query

annotation, which outputs 1 if any of the top-𝑘 results is matched with
the query, and 0 otherwise. For example, if 𝑇𝑂𝑃 (𝑎𝑛𝑠𝑖[∶ 𝑘]) ∈ 𝒂𝑖,
𝜉() = 1. 𝑀𝑉 (𝑎𝑛𝑠𝑖[∶ 𝑘]) returns the predicted label by the majority
vote among the top-𝑘 retrieved results. 𝛿() is a discriminant function to
judge equality as mentioned above. For instance, if 𝑀𝑉 (𝑎𝑛𝑠𝑖[∶ 𝑘]) = 𝒂𝑖,
() = 1.

To maintain a fair comparison with state-of-the-art WSI retrieval
ethods (Chen et al., 2021; Kalra et al., 2020a), macro-average and
eighted-average for the 𝑚𝑀𝑉@𝑘 are also used in our WSI retrieval
xperiments. All the image retrieval validation experiments are con-
ucted using the leave-one-patient-out strategy to avoid information
eakage due to the occasional existence of multiple WSIs from the same
atient.

.4. Results of patch-level retrieval

Our patch-level retrieval experiment is conducted to evaluate the
eature extraction ability of our proposed CCL-based model. As men-
ioned before, TissueNet and UniToPatho datasets with subtype an-
otations are used in the patch-level retrieval experiment. Our patch
etrieval is conducted to find similar cancer subtypes. It is noted that,
uring the retrieval process, patches from the same WSI as the query
re removed from the database to avoid data leakage problems. In
his section, the performance of patch retrieval is evaluated based on
𝑐𝑐@1, 𝐴𝑐𝑐@3, 𝐴𝑐𝑐@5, and 𝑚𝑀𝑉@5 metrics. The following part will

first show the ablation experiments to verify the validity of key compo-
nents in our feature extraction. Then, the patch retrieval experiments
based on our customized CCL-based model are compared with those
based on other SSL methods.

4.4.1. Results of ablation experiments
Effect of network components. The ablation experiments are con-

ducted to validate the effectiveness of the core components in our
proposed CCL-based model. Based on the baseline model (ImageNet
pretrained ResNet50) (He et al., 2016), the key innovations added
in our CCL architecture include large-scale histopathological images-
based pretraining (MoCo v2), group-level InfoNCE loss (MoCo v2+Gro.),
lustering-based memory bank construction (MoCo v2+Mem.), and their
ombination (MoCo v2+Gro.+Mem.). It is noted that, except for the
aseline model (ImageNet pretrained ResNet50), others are all trained
n our large-scale histopathological image database (TCGA and PAIP).
he detailed ablation results are summarized in Table 1.

As shown in Table 1, it is seen that the proposed components bring
ery large improvements (around +24% and +9% in terms of 𝑚𝑀𝑉@5
n the TissueNet and UniToPatho datasets, respectively) compared with
he ImageNet pretrained ResNet50, which verifies the effectiveness
f our CCL-based feature learning method. Specifically, adding the
roup-level InfoNCE loss into the MoCo v2 framework has a consistent
mprovement of around +2% across the two datasets in terms of the
𝑐𝑐@1 and 𝑚𝑀𝑉@5 metrics. The construction of multiple sub-memory
anks also brings high improvements compared to the original MoCo v2

https://github.com/google-research/simclr
https://github.com/facebookresearch/swav
https://github.com/facebookresearch/moco
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Table 1
Ablation results on TissueNet and UniToPatho datasets.

TissueNet UniToPatho

𝐴𝑐𝑐@1 𝐴𝑐𝑐@3 𝐴𝑐𝑐@5 𝑚𝑀𝑉@5 𝐴𝑐𝑐@1 𝐴𝑐𝑐@3 𝐴𝑐𝑐@5 𝑚𝑀𝑉@5

ImageNet 50.35 77.62 87.68 46.15 58.17 82.89 89.45 59.01
MoCo v2 64.74 86.27 92.77 65.57 63.36 83.38 89.57 64.86
MoCo v2+Gro. 66.20 87.07 93.10 67.56 65.49 83.95 90.04 66.63
MoCo v2+Mem. 66.64 87.21 93.12 68.78 65.87 84.10 90.08 67.19
MoCo v2+Gro.+Mem. (Ours) 67.09 87.81 93.40 70.01 66.55 84.32 90.31 68.35
Fig. 2. Visualization of patch-level retrieval results on UniToPatho (A) and TissueNet (B) datasets. Two failed cases from the two datasets are also shown in (C). The blue, green,
and red boxes indicate query patches, correct returns, and failed returns, respectively. In the UniToPatho dataset, NORM (normal tissue), HP (hyperplastic polyp), TA (tubular
adenoma), and TVA (tubulo-villous adenoma) are respectively shown using one example. In the TissueNet dataset, benign, low malignant potential tissue, high malignant potential
tissue, and invasive cancer tissue are respectively shown using one example.
T
E
U

i
f

Table 2
Effect of different number of 𝑄 values on retrieval accuracy using the TissueNet and
UniToPatho datasets.

Q TissueNet UniToPatho

𝐴𝑐𝑐@1 𝑚𝑀𝑉@5 𝐴𝑐𝑐@1 𝑚𝑀𝑉@5

15 66.37 68.78 66.07 67.60
20 66.86 69.25 66.18 67.83
25 67.09 70.01 66.55 68.35
30 66.99 69.63 66.28 67.69
35 66.82 69.02 65.98 67.49

Table 3
Effect of different number of 𝑆 values on retrieval accuracy using the TissueNet and
UniToPatho datasets.
𝑆 TissueNet UniToPatho

𝐴𝑐𝑐@1 𝑚𝑀𝑉@5 𝐴𝑐𝑐@1 𝑚𝑀𝑉@5

20 66.33 68.29 65.56 67.10
25 66.76 69.12 65.91 67.33
30 67.09 70.01 66.55 68.35
40 66.96 69.39 66.01 67.61

framework (around +3% both on TissueNet and UniToPatho datasets
in 𝑚𝑀𝑉@5). Our final solution makes use of all the above innovations,
which provides the best performance as shown in the last row of
Table 1.
9

c

Table 4
Effect of different number of MLP heads on retrieval accuracy using the TissueNet and
UniToPatho datasets.

TissueNet UniToPatho

𝐴𝑐𝑐@1 𝑚𝑀𝑉@5 𝐴𝑐𝑐@1 𝑚𝑀𝑉@5

One head 65.25 66.94 64.09 65.69
Two heads 67.09 70.01 66.55 68.35

able 5
ffect of different settings of 𝑤 on retrieval accuracy using the TissueNet and
niToPatho datasets.
𝑤 TissueNet UniToPatho

𝐴𝑐𝑐@1 𝑚𝑀𝑉@5 𝐴𝑐𝑐@1 𝑚𝑀𝑉@5

0.1 66.71 69.61 66.13 67.69
0.2 67.09 70.01 66.55 68.35
0.5 66.52 68.97 65.79 67.15
1 66.20 67.56 65.49 66.63

Soft 66.23 67.85 65.44 66.81
Hard (𝑤=0.2) 67.09 70.01 66.55 68.35

Although the weighting strategy used in W-InfoNCE is effective, it
s no longer required for G-InfoNCE. The reason can be explained as
ollows. W-InfoNCE and G-InfoNCE are used together to achieve more
omprehensive contrastive learning, whereas the negative samples of



Medical Image Analysis 83 (2023) 102645X. Wang et al.

c

t

Table 6
Patch-level retrieval results by comparing our CCL with other SSL-based feature extractors.

TissueNet UniToPatho

𝐴𝑐𝑐@1 𝐴𝑐𝑐@3 𝐴𝑐𝑐@5 𝑚𝑀𝑉@5 𝐴𝑐𝑐@1 𝐴𝑐𝑐@3 𝐴𝑐𝑐@5 𝑚𝑀𝑉@5

SimCLR v1 (Chen et al., 2020b) 62.60 85.53 92.85 65.04 61.12 83.25 89.50 62.08
MoCo v2 (Chen et al., 2020a) 64.74 86.27 92.77 65.57 63.36 83.38 89.54 64.86
SwAV (Caron et al., 2020) 65.39 86.06 92.54 66.67 64.18 83.45 89.78 64.98
Ours 67.09 87.81 93.40 70.01 66.55 84.32 90.31 68.35
W-InfoNCE and G-InfoNCE come from the offline memory bank and the
urrent mini-batch, respectively. W-InfoNCE uses weights less than 1 to

reduce the effect of too unbalanced positive and negative numbers. On
the contrary, in the computation of G-InfoNCE, the ratio of positives to
negatives is already greatly increased compared to the traditional con-
trastive loss. This is achieved by first clustering samples into clusters,
and only the cluster centroids are used as positive and negative samples
to the anchor sample. Thus, the weighting scheme in W-InfoNCE is no
longer needed for G-InfoNCE.

Effect of different number of clustering centers (𝑄 and 𝑆). To
find potential false negative samples, we divide the memory bank
into 𝑄 sub-memory banks using a K-means algorithm. Similarly, to
rebalance the proportion of positive and negative samples, we add an
auxiliary branch to divide the samples within a batch into 𝑆 classes.
Two ablation experiments are conducted to investigate the effect of
different values of 𝑄 and 𝑆 as shown in Tables 2 and 3. It is seen
hat although our model is robust to the changes of 𝑄 and 𝑆, the

performance is slightly higher when 𝑄 = 25 and 𝑆 = 30. Therefore,
we empirically set the value of 𝑄 to 25 and 𝑆 to 30.

Effect of different number of MLP heads. To investigate the effect
of different configurations of MLP heads, we conduct an ablation study
to compare the performance differences between using one shared
head and two independent heads (𝑔1 and 𝑔2). The results are shown
in Table 4. It is seen that the approach with two MLP heads offers
better performance. The reason for this can be explained as follows.
The MLP heads 𝑔1 and 𝑔2 are used to project features into two different
spaces to compute G-InfoNCE and W-InfoNCE, respectively. W-InfoNCE
repels against other instances, while G-InfoNCE attracts instances within
each cluster. To alleviate the possible conflict between the two loss
functions, two separate branches can be used, which helps train the
feature extractor to be more discriminative across different instances
whereas keeping similar samples within each cluster together in the
feature space (Wang et al., 2021; Zheng et al., 2021).

Effect of different settings of 𝑤. In W-InfoNCE, we introduce a
weight 𝑤 to reduce the contribution of potential false negative samples.
To investigate the sensitivity of our algorithm to different values of
𝑤 (0.1, 0.2, 0.5, and 1), we perform an ablation study as shown in
Table 5. It is seen that a slightly small 𝑤 leads to better performance,
with the best performance obtained when 𝑤 equals 0.2. The reason
is that a slightly smaller value of 𝑤 suppresses the adverse effects of
potentially false negatives more. In addition, we also investigate the
effectiveness of a soft setting for 𝑤 values. That is, for negative samples
belonging to the 𝑗th cluster, their 𝑤 values are kept the same as the
corresponding cosine similarity score 𝑆𝑖𝑚𝑗 . As mentioned earlier, the
𝑆𝑖𝑚𝑗 is calculated between the clustering center 𝐜𝑗 and the anchor
feature 𝐠𝑘. As can be seen from the last two rows of Table 5, the
soft weighting is less effective compared to the hard setting (constant
weight of 0.2). This may be due to the fact that the instance discrimi-
nation task in contrastive learning needs more explicit pseudo-labels to
supervise network training.

4.4.2. Comparison between our CCL and other SSL-based feature extractors
To verify the effectiveness of our CCL-based feature extractor, our

method is compared with other state-of-the-art SSL methods, including
SimCLR v1 (Chen et al., 2020b), SwAV (Caron et al., 2020), and MoCo
v2 (Chen et al., 2020a; He et al., 2020). These SSL methods typically
10
involve two parallel branches during training to conduct contrastive
learning. To guarantee a sufficient number of negative samples, SimCLR
v1 keeps a large batch size and MoCo v2 uses a separated queue
as a memory bank to store negative samples. The SwAV performs
a cluster assignment prediction to avoid the direct pairwise feature
comparisons and generate more effective negative samples. This com-
parison experiment is performed based on our patch retrieval method
but using different feature extractors. The detailed comparison results
are provided in Table 6.

As shown in Table 6, it is demonstrated that the patch retrieval
based on our feature extractor consistently shows better performance
than those based on other SSL-based feature extractors in terms of
all the four metrics on the two patch-level datasets. Specifically, in
terms of the 𝑚𝑀𝑉@5 metric, our method has an improvement of
+3.34% and +3.37% over the previous highest method (SwAV). We
also present visualized results to provide interpretability analysis as
shown in Fig. 2. We show the top-5 retrieved patches across all the
subtypes on the UniToPatho (NORM, HP, TA, and TVA) and TissueNet
datasets (benign, low potential, high potential, and invasive cancer). It
is seen that our system has the ability to find the patches with similar
semantic features and return the correct class labels of these patches.
For these examples in Fig. 2B, even returned images from the same
sub-category show diverse appearances in terms of color and texture,
our search system can still return correct results. For the two bad cases
shown in Fig. 2C, these erroneously retrieved patches show a similar
appearance to the query patches, mainly in terms of morphological
features. For example, given a TVA patch as a query, these retrieved
error patches are diagnosed as TV. The reason for this is mainly due to
the high morphological similarity between the two polyp subtypes. TV
and TVA have different villous features but have similar tubular gland
structures (Ishii et al., 2011). Thus, distinguishing between the two
polyps is a very challenging task even for experienced pathologists (Bar-
bano et al., 2021). Previous studies have also shown the discordance in
the diagnosis of colorectal polyp subtypes by pathologists (Turner et al.,
2013; Wei et al., 2020).

4.5. Results of WSI retrieval

The WSI-level retrieval experiments are conducted from two as-
pects: (1) searching for anatomic sites and (2) searching for cancer
subtypes based on the same human site. To fairly compare with pre-
vious Yottixel (Kalra et al., 2020a,b) and FISH (Chen et al., 2021)
approaches, our WSI retrieval experiments are evaluated on the same
mechanism as the two methods, including the similar WSI database
(TCGA) and the same evaluation metrics. Since the frozen and FFPE
WSIs in TCGA show quite different appearances, mixing them will
influence retrieval performance (Cooper et al., 2018). Thus, keeping
consistent with the two methods (Chen et al., 2021; Kalra et al.,
2020a,b), we separate the two kinds of WSIs to respectively perform
WSI retrieval tasks.

4.5.1. Results of anatomic site retrieval
Although anatomic sites of tissue sections are usually known in the

slide preparation process, anatomic site retrieval experiments can be
conducted to validate the searching performance of our algorithm. Our
anatomic site retrieval experiment is designed to find WSIs with the
same anatomic sites as the query WSI in the TCGA database (frozen or
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Table 7
Results of anatomical site retrieval experiment on frozen WSIs in terms of 𝑚𝑀𝑉@10.
Anatomic Sites #WSI #Patient 𝑚𝑀𝑉@10

Yottixel Ours

Brain 1818 1091 83.86 90.21
Endocrine 796 769 35.37 80.44
Gastrointestinal 1984 1234 62.86 81.77
Gynecologic 2284 1502 68.86 50.74
Hematopoiesis 182 170 45.85 66.49
Melanocytic 542 536 37.20 47.42
Liver/PB 669 610 35.35 76.23
Pulmonary 1658 1093 59.30 79.99
Urinary 2035 1323 64.59 79.35
Prostate/Testis 759 639 68.07 84.28
Breast 1520 1080 66.35 91.35
Mesenchymal 263 260 11.19 74.13
Head and Neck 727 471 26.24 79.64

Macro-average – – 51.16 75.54
Weighted-average – – 60.45 75.50
Table 8
Results of anatomical site retrieval experiment on FFPE WSIs in terms of 𝑚𝑀𝑉@10.
Anatomic Sites #WSI #Patient 𝑚𝑀𝑉@10

Yottixel FISH Ours

Brain 1699 878 91.37 95.80 93.41
Endocrine 942 737 73.93 70.00 69.64
Gastrointestinal 1205 1148 65.12 56.10 83.80
Gynecologic 1074 933 63.71 69.40 76.82
Hematopoiesis 224 165 52.03 79.40 80.36
Melanocytic 554 512 37.20 48.60 53.97
Liver/PB 628 586 63.75 72.50 89.97
Pulmonary 1137 1028 75.83 71.60 81.60
Urinary 1394 1280 66.01 54.20 69.80
Prostate/Testis 703 552 80.31 84.40 86.49
Breast 1160 1045 70.87 75.80 93.71
Mesenchymal 599 254 50.70 61.70 91.65
Head and Neck 472 450 49.14 51.40 77.97

Macro-average – – 64.61 68.53 80.71
Weighted-average – – 69.05 70.17 81.62
Table 9
Results of cancer subtype retrieval experiment on frozen WSIs in terms of 𝑚𝑀𝑉@5.

WSI Type #WSI #Patient 𝑚𝑀𝑉@5 WSI Type #WSI #Patient 𝑚𝑀𝑉@5

Yottixel Ours Yottixel Ours

Pulmonary Liver/PB
LUAD 822 505 68.23 78.10 CHOL 51 51 35.29 39.22
LUSC 751 486 78.25 90.28 LIHC 398 375 94.36 94.97
MESO 87 87 27.71 83.91 PAAD 218 184 91.66 90.83

Urinary Gynecologic
BLCA 429 410 92.85 98.37 UCEC 711 542 90.07 81.86
KIRC 1088 536 97.81 93.75 CESC 309 302 64.42 78.32
KICH 146 90 78.26 91.78 UCS 57 57 10.20 68.42
KIRP 375 281 62.12 88.80 OV 1203 589 99.07 93.43

Gastrointestinal Endocrine
COAD 855 459 63.73 55.55 ACC 91 91 45.67 81.32
ESCA 173 172 25.90 67.05 PCPG 180 175 85.63 88.89
READ 330 171 14.32 37.27 THCA 538 502 97.08 98.33
STAD 632 432 71.10 73.42

Melanocytic Prostate/Testis
UVM 69 69 46.37 88.41 TGCT 155 149 86.45 98.06
SKCM 470 467 98.70 94.68 PRAD 605 489 98.33 98.18

Brain Hematopoiesis
GBM 1097 577 94.19 85.78 DLBC 59 46 91.22 77.97
LGG 715 509 82.58 86.30 THYM 124 124 97.58 96.77

The macro-average 𝑚𝑀𝑉@5 of Yottixel and our method are 72.04 and 82.76, respectively.
FFPE). To be consistent with FISH and Yottixel methods (Chen et al.,
2021; Kalra et al., 2020a,b), our anatomic site retrieval database covers
13 anatomic sites and includes 27,028 WSIs (11,791 FFPE and 15,237
frozen WSIs). Tables 7 and 8 show anatomical site retrieval results
and the number of WSIs and patients in each anatomical site on the
frozen and FFPE WSIs, respectively. In addition, to investigate the WSI
11
retrieval performance with different feature extraction methods, we
replace the ImageNet features and color histogram features with our
CCL-based histopathology features for comparison. The detailed results
are shown in Table 1 in the Appendix.

As seen in Tables 7 and 8, the columns Yottixel and FISH are
copied directly from their publications. Our method achieves 75.54%
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Table 10
Results of cancer subtype retrieval experiment on FFPE WSIs in terms of 𝑚𝑀𝑉@5.

WSI Type #WSI #Patient 𝑚𝑀𝑉@5 WSI Type #WSI #Patient 𝑚𝑀𝑉@5

Yottixel FISH Ours Yottixel FISH Ours

Pulmonary Liver/PB
LUAD 538 475 70.96 79.81 84.01 CHOL 38 38 43.58 46.15 55.26
LUSC 512 478 81.70 71.68 84.18 LIHC 381 365 93.65 90.30 96.06
MESO 87 75 8.13 55.81 72.41 PAAD 203 183 91.04 89.47 96.55

Urinary Gynecologic
BLCA 457 385 95.81 93.22 98.03 UCEC 595 506 92.22 84.28 84.87
KIRC 519 513 91.66 92.29 93.06 CESC 285 268 62.45 78.78 86.67
KICH 109 109 75.92 90.10 95.41 UCS 87 53 42.22 71.26 72.41
KIRP 297 273 67.22 66.33 90.91 OV 107 106 66.98 83.18 70.09

Gastrointestinal Endocrine
COAD 469 447 76.14 48.30 69.72 ACC 226 56 93.83 96.04 94.69
ESCA 158 156 59.87 79.75 82.28 PCPG 195 175 88.77 91.84 82.99
READ 169 161 10.19 44.94 25.44 THCA 521 506 97.66 98.07 99.04
STAD 409 384 74.23 74.23 76.53

Melanocytic Prostate/Testis
UVM 80 80 83.75 70.00 97.50 TGCT 254 149 99.21 97.64 97.64
SKCM 474 432 99.57 99.58 97.89 PRAD 449 403 98.43 98.44 98.66

Brain Hematopoiesis
GBM 857 387 91.88 87.75 81.43 DLBC 44 44 58.13 88.37 72.73
LGG 842 491 89.77 97.02 83.73 THYM 180 121 98.87 93.89 98.89

The macro-average 𝑚𝑀𝑉@5 of Yottixel, FISH, and our method are 75.99, 81.33, and 84.11, respectively.
Fig. 3. Interpretability analysis for the WSI-level query results (good case), taking a query slide with the cancer subtype of KIRC as an example. Images with the same color box
are considered to have similar semantics. (A) shows an example of WSI query results. The patches with color boxes in the query WSI are generated by the mosaic generation
method, which are subsequently used for patch-level retrieval as shown in (B). In (B), each query patch finally returns five similar patches. These returned patches are then
projected into their associated WSIs, which are visualized in (A). It is noted that all these highlighted patches are verified as KIRC-positive by two pathologists from Shanghai Jiao
Tong University School of Medicine and Sun Yat-sen University Cancer Center.
(frozen) and 80.71% (FFPE) macro-average 𝑚𝑀𝑉@10, which greatly
outperforms the FISH (68.53% on FFPE slides) and Yottixel (51.16%
on frozen slides and 64.61% on FFPE slides). In other words, our
method improves the overall performance by more than 15% on frozen
WSIs and about 10% on FFPE WSIs compared with the existing two
WSI retrieval methods. For some specific human sites, such as Gas-
trointestinal, Breast, Head, and Neck, our method exceeds the existing
12
methods by nearly 20% as shown in Tables 7 and 8. We also no-
tice that the performance across anatomic sites is strongly related to
the number of WSIs in the database. The low searching performance
usually occurs on sites with a small number of WSIs in the database
as expected. For example, as shown in Tables 7 and 8, Melanocytic
(frozen and FFPE) shows consistent low performance across all the
three methods.
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Table 11
Linear evaluation results on DiagSet-A.2 dataset with different sizes of training data. All these methods adopt ResNet50 as the backbone model. The ImageNet means ImageNet
pretrained features in a supervised manner. Note that a supervised baseline using 100% of the training data is also implemented, which produces an ACC of 0.8482 and a F1
score of 0.8462.

Methods Percentage of training data

2% 5% 10% 20% 50%

ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

ImageNet 0.7686 0.7057 0.7764 0.7512 0.7842 0.7600 0.7885 0.7655 0.7969 0.7749
SimCLR v1 0.7862 0.7370 0.7962 0.7725 0.8176 0.7903 0.8233 0.8041 0.8266 0.8129
MoCo v2 0.7955 0.7419 0.8066 0.7929 0.8248 0.8119 0.8298 0.8124 0.8368 0.8198
SwAV 0.7970 0.7506 0.8211 0.8056 0.8354 0.8211 0.8408 0.8236 0.8471 0.8308
CCL (ours) 0.8086 0.7617 0.8381 0.8136 0.8461 0.8301 0.8536 0.8467 0.8563 0.8469
As seen in Table 1 in the Appendix, our CCL-based feature learning
ethod works well with other WSI retrieval methods as well, and
roduces better accuracy than the original feature extraction meth-
ds in these methods. In particular, we rerun the Yottixel and FISH
ethods but replace the two features (ImageNet features and color
istogram features) used in both the Yottixel and FISH methods with
ur CCL-based features, which produces CCL+Yottixel and CCL+FISH
espectively. Compared with the original Yottixel and FISH methods,
sing the CCL-based features improves the macro-average 𝑚𝑀𝑉@10
y around +6% and +8%, respectively, further demonstrating the effec-
iveness of our histopathology-specific feature learning. Also, it is seen
hat the proposed RetCCL method achieves the highest performance,
utperforming the CCL+Yottixel and CCL+FISH methods in terms of
acro-average 𝑚𝑀𝑉@10 by around +10% and +3%, respectively.
hese results clearly show the advantages of the proposed WSI retrieval
lgorithm.

.5.2. Results of cancer subtype retrieval
Recognition for cancer subtypes requires many years of experience

nd rich expertise, which is very challenging especially for trainees.
he cancer subtype retrieval system assumes a query WSI from a
nown anatomical site and retrieves WSIs with similar cancer sub-
ypes from the dataset collected from the same anatomical site as the
uery. Among these 13 anatomic sites mentioned above, 10 of them
re composed of more than one cancer subtype. Following the FISH
nd Yottixel methods (Chen et al., 2021; Kalra et al., 2020a,b), we
onduct cancer subtype retrieval experiments over these 10 anatomic
ites. The detailed cancer subtypes in each anatomic site and their
etrieval results are shown in Tables 9 and 10 for frozen and FFPE WSIs,
espectively.

As shown in Tables 9 and 10, our method achieves an improvement
f +10% than the Yottixel and +3% than the FISH in terms of the
acro-average 𝑚𝑀𝑉@5 in the FFPE WSIs. In the frozen WSI dataset,

ompared with the Yottixel, our method has achieved a considerable
mprovement of +40% on some specific subtypes, such as MESO in
ulmonary site, UCS in Gynecologic site, and ESCA in Gastrointestinal
ite. In the FFPE WSIs, compared with the FISH method, our method
as achieved an improvement of around +16% on MESO in Pulmonary
ite, +25% on KIRP in Urinary site, and +27% on UVM in Melanocytic
ite, respectively. At some cancer subtypes, such as DLBC and THYM
n Hematopoiesis site, our performance is lower than the two meth-
ds, which may be influenced by the limited number of WSIs in the
orresponding cancer types.

.5.3. Interpretability analysis
Computer-aided diagnosis needs to provide pathologists with in-

erpretable results to promote its clinical applications. Highlighting
vidence that supports the specific results produced by the models is
common strategy. Based on the cancer subtype retrieval experiment,

his work provides visualized analysis during WSI retrieval by pointing
ut high-related patches within each retrieved WSI.

For the good case shown in Fig. 3, our mosaic generation technique
an generate a set of key patches (represented using different colors)
13
from the query WSI with KIRC (kidney renal clear cell carcinoma).
Then, as shown in Fig. 3B, these patches are adopted as new query
images to search for their corresponding similar patches from the
database. These found patches along with their meta-information are
projected into their associated WSIs as shown in Fig. 3A. Note that
all these highlighted patches are also verified as KIRC-positive by two
pathologists from Shanghai Jiao Tong University School of Medicine
and Sun Yat-sen University Cancer Center. More visualization of the
retrieval results is provided in the Appendix. For the bad case as shown
in Fig. 1D in the Appendix, the query WSI is diagnosed with COAD
(colon adenocarcinoma), which retrieves some failure cases with READ
(rectum adenocarcinoma). The reason is largely due to the highly sim-
ilar glandular in both COAD and READ, that is, the extracted features
may not be distinctive enough to produce correct predictions between
the two similar subtypes. In summary, this visualization process can
help interpret the searching results for pathologists, assisting them to
better understand what dominates the returns for one specific query
WSI.

4.6. Results of downstream classification task

Our SSL pre-trained feature extractor can be used as a universal
feature representation for histopathological image analysis tasks. To
further verify the generalizability of the features, this subsection con-
ducts a downstream four-class classification task on the DiagSet-A.2
dataset with different proportions of training data. Also, we compare
the performance of our method with other state-of-the-art SSL methods.
The detailed results are shown in Table 11.

In Table 11, the results of these state-of-the-art SSL methods are
obtained by pretraining on the same data as ours using their released
codes. As shown in Table 11, our method achieves the highest per-
formance, which is about 1% higher than the SwAV method under
all training data settings. This indicates that our CCL-based feature
embedding can be transferred well to the histopathological image
classification task. Furthermore, it is seen that our method based on
frozen histopathology features uses only 20% of the training data to
achieve the performance of the Imagenet-based features using 100%
of the training data, which further confirms the effectiveness of our
self-supervised feature learning method.

5. Conclusion

This work proposes a histopathological image retrieval algorithm,
which is applicable for both WSI-level and patch-level retrieval and can
provide visually interpretable results for pathologists. Since a rich and
descriptive feature is the key success factor in the image retrieval task,
our work pays more attention to the design of the feature extractor.
We developed a CCL-based backbone model, which is trained by inte-
grating the multiple sub-memory banks and group-level discrimination
together to reduce the number of potential false-negative samples
under the assumption of traditional contrastive learning. In the WSI
retrieval procedure, we perform a patch-by-patch retrieval rather than
a whole WSI level retrieval to obtain interpretable search results. These
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retrieved patches are ranked, curated, and aggregated to obtain their
associated similar WSIs. As demonstrated in our experimental results,
our algorithm has outperformed current WSI retrieval methods by a
large margin in both the anatomical site and cancer subtype search
settings. Compared with other SSL methods in the patch-level image
retrieval experiments, our CCL-based features also demonstrate supe-
rior performance. Given the high performance in the histopathological
image retrieval task, the proposed feature extractor has the potential
to be a universal pretrained model for various histopathological image
applications. Future work is warranted to apply our feature representa-
tion on more histopathological image analysis tasks to further validate
its robustness and generalizability. To assess the clinical benefits of our
WSI retrieval algorithm, future work can also validate it on a larger,
diverse, and multi-center database.
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